首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2235篇
  免费   262篇
  国内免费   110篇
化学   188篇
晶体学   11篇
力学   1220篇
综合类   5篇
数学   153篇
物理学   1030篇
  2024年   2篇
  2023年   11篇
  2022年   24篇
  2021年   41篇
  2020年   32篇
  2019年   49篇
  2018年   57篇
  2017年   74篇
  2016年   84篇
  2015年   65篇
  2014年   92篇
  2013年   244篇
  2012年   89篇
  2011年   148篇
  2010年   86篇
  2009年   107篇
  2008年   89篇
  2007年   123篇
  2006年   126篇
  2005年   139篇
  2004年   104篇
  2003年   71篇
  2002年   87篇
  2001年   68篇
  2000年   78篇
  1999年   58篇
  1998年   56篇
  1997年   68篇
  1996年   54篇
  1995年   33篇
  1994年   37篇
  1993年   44篇
  1992年   22篇
  1991年   36篇
  1990年   19篇
  1989年   19篇
  1988年   16篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   6篇
  1983年   4篇
  1982年   10篇
  1981年   4篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1957年   5篇
排序方式: 共有2607条查询结果,搜索用时 15 毫秒
61.
 采用了1维简单模型来模拟气体靶的空间密度分布情况,并且该计算值得到了实验的验证。使用M-Z干涉仪诊断锥型喷嘴喷射的气体靶密度分布,得到了不同压力和不同延时下的干涉图样。自行编写了实验数据处理程序,得到了不同情况下气体密度的空间分布。在相互作用实验中,由气体分子密度随压力的变化,可以确定合适的压力,以获得预期的气体靶密度;由气体分子密度随时间的变化,可以确定激光与气体的作用时刻。  相似文献   
62.
采用自行研制的中心嵌有铜柱感应件的小尺寸杆状热流探针,在低扰动条件下,对射入大气环境的纯氩层流等热离子体射流传向铜探头表面的热流密度进行了动态测量.结果表明,在射流最高温度16500 K、最大轴向速度850 m/s、探针垂直于射流流动方向的移动速度130~260 mm/s的实验参数范围内,随着探针移动速度的提高,测得的热流密度值减小;射流温度和速度越高,探针移动速度对热流密度测量值的影响越大.  相似文献   
63.
本文在分级进风燃烧室的热态实验装置上,测量了燃烧室内湍流燃烧的温度场和组分浓度场,研究了分级进风的流量比率即二次风率对燃烧及NOx生成的影响.得到了四组不同二次风率下燃烧室内气体温度和O2、CO2、CO与NO浓度的分布.  相似文献   
64.
层流与湍流等离子体冲击射流特性比较   总被引:1,自引:0,他引:1  
本文采用数值模拟方法,对层流与湍流氩等离子体射流在空气环境中冲击平板时的流动与传热特性进行了对比研究.结果表明,在平板和射流进口间的距离较大时,平板的存在只对其附近的射流参数分布有较大影响,层流等离子体冲击射流的温度与轴向速度的轴向梯度明显小于湍流等离子体冲击射流情形;由于在平板表面形成的径向壁面射流对引射的附加贡献,层流和湍流等离子体冲击射流对环境空气的引射量明显增加.  相似文献   
65.
刘秀梅  赵瑞  贺杰  陆建  倪晓武 《物理学报》2007,56(11):6508-6513
通过自行研制的光纤传感器对不同黏度液体中材料靶后的力学作用进行研究,获得了液体黏度变化对等离子体烧蚀力、射流冲击力及空泡生存周期的影响. 实验结果表明:液体黏度相同时,靶材所受冲击力幅值随作用激光能量的增加单调上升;液体黏度增加时,靶材所受的冲击力减小,靶材的空化空蚀程度亦减小;受液体黏度增大的影响,空泡膨胀或收缩过程减缓,相应的生存周期也增大. 此外,对空泡溃灭周期公式进行修正, 结果表明修正后的理论估算值与实验值的一致性较好.  相似文献   
66.
Wall boundary conditions in smoothed particle hydrodynamics (SPH) is a key issue to perform accurate simulations. We propose here a new approach based on a renormalising factor for writing all boundary terms. This factor depends on the local shape of a wall and on the position of a particle relative to the wall, which is described by segments (in two‐dimensions), instead of the cumbersome fictitious or ghost particles used in most existing SPH models. By solving a dynamic equation for the renormalising factor, we significantly improve traditional wall treatment in SPH, for pressure forces, wall friction and turbulent conditions. The new model is demonstrated for cases including hydrostatic conditions for still water in a tank of complex geometry and a dam break over triangular bed profile with sharp angle where significant improved behaviour is obtained in comparison with the conventional boundary techniques. The latter case is also compared with a finite volume and volume‐of‐fluid scheme. The performance of the model for a two‐dimensional laminar flow in a channel is demonstrated where the profiles of velocity are in agreement with the theoretical ones, demonstrating that the derived wall shear stress balances the pressure gradient. Finally, the performance of the model is demonstrated for flow in a schematic fish pass where both the velocity field and turbulent viscosity fields are satisfactorily reproduced compared with mesh‐based codes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
67.
This investigation concerns numerical calculation of turbulent forced convective heat transfer and fluid flow in straight ducts using the RNG (Re-Normalized Group) turbulence method.

A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts with different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with the RNG κ?ε model and the RNG non-linear κ-ε model of Speziale. The turbulent heat fluxes are modeled by the simple eddy diffusivity (SED) concept, GGDH and WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models arc implemented for an arbitrary three dimensional duct.

Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non-staggered grid arrangement. The pressure-velocity coupling is handled by using the SIMPLEC-algorithm. The convective terms are treated by the QUICK, scheme while the diffusive terms are handled by the central-difference scheme. The hybrid scheme is used for solving the κ and ε equations.

The overall comparison between the models is presented in terms of friction factor and Nusselt number. The secondary flow generation is also of major concern.  相似文献   
68.
We present a numerical model for predicting the instability and breakup of viscous microjets of Newtonian fluid. We adopt a one‐dimensional slender‐jet approximation and obtain the equations of motion in the form of a pair of coupled nonlinear partial differential equations (PDEs). We solve these equations using the method of lines, wherein the PDEs are transformed to a system of ordinary differential equations for the nodal values of the jet variables on a uniform staggered grid. We use the model to predict the instability and satellite formation in infinite microthreads of fluid and continuous microjets that emanate from an orifice. For the microthread analysis, we take into account arbitrary initial perturbations of the free‐surface and jet velocity, as well as Marangoni instability that is due to an arbitrary variation in the surface tension. For the continuous nozzle‐driven jet analysis, we take into account arbitrary time‐dependent perturbations of the free‐surface, velocity and/or surface tension as boundary conditions at the nozzle orifice. We validate the model using established computational data, as well as axisymmetric, volume of fluid (VOF) computational fluid dynamic (CFD) simulations. The key advantages of the model are its ease of implementation and speed of computation, which is several orders of magnitude faster than the VOF CFD simulations. The model enables rapid parametric analysis of jet breakup and satellite formation as a function of jet dimensions, modulation parameters, and fluid rheology. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
69.
The present paper investigates the multigrid (MG) acceleration of compressible Reynolds‐averaged Navier–Stokes computations using Reynolds‐stress model 7‐equation turbulence closures, as well as lower‐level 2‐equation models. The basic single‐grid SG algorithm combines upwind‐biased discretization with a subiterative local‐dual‐time‐stepping time‐integration procedure. MG acceleration, using characteristic MG restriction and prolongation operators, is applied on meanflow variables only (MF–MG), turbulence variables being simply injected onto coarser grids. A previously developed non‐time‐consistent (for steady flows) full‐approximation‐multigrid (s–MG) is assessed for 3‐D anisotropy‐driven and/or separated flows, which are dominated by the convergence of turbulence variables. Even for these difficult test cases CPU‐speed‐ups rCPUSUP∈[3, 5] are obtained. Alternative, potentially time‐consistent approaches (unsteady u–MG), where MG acceleration is applied at each subiteration, are also examined, using different subiterative strategies, MG cycles, and turbulence models. For 2‐D shock wave/turbulent boundary layer interaction, the fastest s–MG approach, with a V(2, 0) sawtooth cycle, systematically yields CPU‐speed‐ups of 5±½, quasi‐independent of the particular turbulence closure used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
70.
Jet impingement onto a hole with elevated wall temperature can be associated with the high‐temperature thermal drilling, where the gas jet is used for shielding the hole wall from the high‐temperature oxidation reactions as observed in the case of laser drilling. In laser processing, the molten flow from the hole wall occurs; and in the model study, the hole wall velocity resembling the molten flow should be accounted for. In the present study, gas jet impingement onto tapered hole with elevated temperature is considered and the heat transfer rates as well as skin friction at the hole wall surface are predicted. The velocity of molten flow from the hole wall determined from the previous study is adopted in the simulations and the effect of hole wall velocity on the heat transfer rates and skin friction is also examined. It is found that the Nusselt number and skin friction at the hole wall in the regions of hole inlet and exit attain high values. The influence of hole wall velocity on the Nusselt number and skin friction is found not to be very significant. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号